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ABSTRACT

How clouds will respond to Earth’s warming climate is the greatest contrib-

utor to intermodel spread of Equilibrium Climate Sensitivity (ECS). Although

global climate models (GCMs) generally agree that the total cloud feedback is

positive, GCMs disagree on the magnitude of cloud feedback. Satellite instru-

ments with sufficient accuracy to detect climate change-scale trends in cloud

properties will provide improved confidence in our understanding of the re-

lationship between observed climate change and cloud property trends, thus

providing essential information to better constrain ECS. However, a robust

framework is needed to determine what constitutes sufficient or necessary ac-

curacy for such an achievement. Our study applies a climate change accuracy

framework to quantify the impact of absolute calibration accuracy on climate

change-scale trend detection times for cloud fraction, effective temperature,

optical thickness, and effective radius. With this framework, we demonstrate

how more stringent absolute accuracy requirements for reflected solar and

infrared cloud imagers enable improved constraint of SW and LW cloud feed-

backs and the ECS by significantly reducing trend uncertainties for cloud frac-

tion, optical thickness, and effective temperature compared to operational in-

struments. Additionally, more stringent absolute accuracy requirements com-

pared to today’s operational instruments would help to further constrain the

aerosol indirect effect, the largest uncertainty in radiative forcing, by reduc-

ing water cloud effective radius trend uncertainty. This study demonstrates

the application of this climate accuracy framework and the implications of its

results within climate science.
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1. Introduction35

Clouds play a significant role in the Earth’s radiation budget by modulating the magnitude of36

shortwave (SW) reflected (0.3 µm–3.5 µm) and longwave (LW) emitted (3.5 µm–100 µm) radi-37

ation at the top of the atmosphere (TOA) (Stephens et al. 1990; Chen et al. 2000; Stephens 2005).38

On a global, annual scale, clouds reduce incoming SW (outgoing LW) irradiance by about 5039

Wm-2 (28 Wm-2). Clouds, therefore, have a net cooling effect on Earth’s climate system of about40

22 Wm-2, according to the CERES EBAF-TOA (Clouds and Earth’s Radiant Energy System En-41

ergy Balance and Filled) data set (Loeb et al. 2009, 2012; Dolinar et al. 2014). Changes in cloud42

macrophysical (e.g. height, amount) and microphysical (e.g. optical thickness, effective particle43

size) properties induce positive (amplifying) or negative (dampening) feedbacks, thus contributing44

to the Earth’s climate system response to climate forcings and non-cloud feedbacks.45

How clouds will respond to Earth’s warming climate is one of the largest sources of uncertainty46

among Global Climate Model (GCM) projections. Net cloud feedbacks in modeling experiments47

comprising the fifth phase of the Climate Model Intercomparison Project (CMIP5) (Taylor et al.48

2012) tend to be nearly neutral or positive meaning that CMIP5 models predict that clouds will49

likely change such that they will cool the planet less as global mean surface temperature increases.50

However, a significant amount of disagreement remains regarding the magnitude of the net cloud51

feedback among CMIP5 model output (Flato et al. 2013). Estimating SW and LW cloud feedback52

from observations requires global monitoring of observed decadal changes in the SW and LW53

cloud radiative effect (CRE) (previously, cloud forcing), the difference between clear-sky and all-54

sky TOA irradiance (flux). Understanding the physical basis of CRE decadal trends requires a55

comprehensive understanding of how global cloud properties that govern trends in SW and LW56

CRE respond to changes in Earth’s climate.57

3



The uncertainty in CMIP5 SW cloud feedback is the largest contributor to intermodel spread in58

equilibrium climate sensitivity (ECS) (2.1K to 4.7K), a range that remains similar to that previ-59

ously reported from the CMIP3 modeling experiments (Flato et al. 2013). This raises the question60

of what is needed to better constrain cloud feedback and therefore ECS. The tools used to ob-61

serve Earth’s climate system must have the required accuracy to detect cloud property trends on62

climate change-relevant scales (>2000 km spatial and decadal temporal scales). Included among63

these tools are passive remote sensing satellite measurements and the associated retrieval algo-64

rithms used to infer macrophysical and microphysical cloud properties from those measurements.65

The accuracy of both the satellite instruments and algorithms must be sufficient for unambiguous66

understanding of cloud response to climate change.67

Climate change detection requires measurements from instruments with high accuracy that pro-68

vide the capability to detect what are likely to be small, global and inter-annual changes within69

Earth’s climate system (Ohring et al. 2005). Wielicki et al. (2013) addressed the challenge of70

robustly and quantitatively defining climate change accuracy requirements by developing an ac-71

curacy framework that can be applied to a diverse swath of Essential Climate Variables (ECVs)72

and measurement systems to determine the necessary accuracy requirements of a satellite-based73

observing system (Leroy et al. 2008; Weatherhead et al. 1998). This accuracy framework provides74

a quantitative basis for determining climate science-driven accuracy requirements for a diversity75

of satellite instruments and geophysical variables.76

Wielicki et al. (2013) presented this accuracy framework using, as an example, the Cli-77

mate Absolute Radiance and Refractivity Observatory (CLARREO), a Tier-1 Decadal Survey-78

recommended climate observing mission (National Research Council 2007). The CLARREO79

mission concept includes reflected solar (RS) and infrared (IR) spectrometers with SI-traceable80

on-orbit calibration designed to achieve substantially higher accuracy, up to ten times greater, than81
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any currently or previously operational Earth-observing satellite sensor. These instruments will be82

used both for climate benchmarking and inter-calibrating with other instruments that are opera-83

tional during the CLARREO lifetime. CLARREO inter-calibration would include cloud imagers,84

such as MODIS (Moderate Resolution Imaging Spectroradiometer) and VIIRS (Visible/Infrared85

Imager/Radiometer Suite), thus enabling the improved accuracy of the reflectance and brightness86

temperature measurements used in their corresponding geophysical retrieval algorithms. During87

its inter-calibration activities, the CLARREO instruments would serve as calibration standards88

in orbit, with the ability to improve the accuracy of up to 30-40 currently operational satellite89

instruments in low-Earth and geostationary orbit (Roithmayr et al. 2014a,b).90

The satellite sensors with which the CLARREO instruments would inter-calibrate would still91

be essential parts of the global climate observing system. For example, cloud imagers have the92

spatial and temporal sampling needed for global monitoring of cloud properties, and the CERES93

instruments have the angular sampling required to estimate TOA SW and LW irradiance (flux).94

The CLARREO mission goals of unprecedented accuracy and high information content for inter-95

calibration and climate benchmarking allow for the mission to contribute to the climate com-96

munity’s needs independently and in conjunction with the other essential instruments within the97

climate observing system. In our studies, we will also apply the accuracy framework using the98

CLARREO requirements as examples of climate mission requirements.99

Wielicki et al. (2013) (hereafter, W13) presented an accuracy framework to quantify climate100

change instrument requirements based on the need to detect global mean trends in two ECVs: the101

SW cloud radiative effect and global mean surface temperature. W13 illustrated the importance of102

high instrument accuracy for constraining trend detection times for these two ECVs. However, the103

impact of instrument and algorithm uncertainties on delaying trend detection times in many other104

ECVs remains to be evaluated. This includes cloud properties, which, as we have noted above, are105
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a crucial, but largely uncertain part of understanding observed climate changes and constraining106

the spread among climate model projections.107

Other studies have applied this framework to study the effect of measurement errors on pre-108

cipitable water vapor trend detection times (Roman et al. 2014), to compare the trend detection109

times between RS hyperspectral and broadband climate Observing System Simulation Experiment110

(OSSE) simulations (Feldman et al. 2011), and to quantify the IR spectral fingerprinting retrieval111

error impact on atmospheric and cloud property trend uncertainties (Kato et al. 2014). The versa-112

tility of this framework allows for its application to a wide array of observing systems and ECVs.113

In this study, we apply the principles of the W13 accuracy framework to evaluate the impact114

of reflected solar and infrared instrument accuracy requirements on trend uncertainty and trend115

detection time of satellite-retrieved cloud properties. We focus our studies on absolute calibration116

instrument accuracy, which dominates trend uncertainty on global scales; although other noise and117

uncertainty sources also contribute to trend uncertainty (W13).118

The analysis described herein was conducted using cloud properties retrieved from the CERES119

(Wielicki et al. 1996) Cloud Property Retrieval System (CPRS) (Minnis et al. 2011) which ingests120

spatially subsetted MODIS reflectance and brightness temperatures. We therefore quantified the121

MODIS-like accuracy requirements needed to observe climate change trends in retrieved cloud122

properties. This analysis is the first of its kind.123

In Section 2, we describe the W13 climate accuracy framework used in this study. Section 3124

includes the details of how we applied the framework in our analysis of cloud properties. In Section125

4 we present our analysis of the results and their implications, and in Section 5 we summarize our126

studies, present our conclusions, and discuss future work.127
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2. Climate Observing System Accuracy Framework128

W13 demonstrated a climate observing system accuracy framework based on earlier work by129

Leroy et al. (2008) and Weatherhead et al. (1998). Leroy et al. (2008) derived the following130

equation to calculate the trend uncertainty, δm, for a geophysical variable as determined from a131

measured time series of record length ∆t:132

δm =
√

12∆t−3(snσvar)2κvar +(snσV cal)2κcal), (1)

where σvar is the standard deviation of natural variability, κvar is the autocorrelation time of133

natural variability, σV cal is the calibration uncertainty of the geophysical variable, κcal is the cali-134

bration autocorrelation time, and sn is the signal-to-noise ratio (e.g. sn = 2 for a 95% confidence135

bound). Autocorrelation time can be thought of as the amount of time between independent mea-136

surements and is a function of the lag-1 autocorrelation (Weatherhead et al. 1998). As shown137

in W13, additional uncertainties can be evaluated using Eqn. 1, such as instrument noise and138

orbit sampling uncertainty. As discussed in Section 1, however, calibration uncertainty tends to139

dominate the trend uncertainty (among instrument noise, calibration, and sampling uncertainty)140

of geophysical variables on global scales (W13); therefore, we focus in this paper on absolute141

calibration uncertainty for global trends of cloud properties. The calibration autocorrelation time142

can be understood as the time over which the calibration of the instrument can be assumed to drift143

within the instrument’s calibration uncertainty. Units of δm are dependent upon the units of the144

uncertainties, autocorrelation times, and record length. Consistent units should be used for natural145

variability and calibration uncertainty, as well as for record length and autocorrelation time.146

The trend uncertainty determined from measurements made by a perfect instrument, δmp, is147

only limited by the natural variability of the climate variable, as shown in Eqn. 2 (Leroy et al.148

2008). Regardless of how flawless an instrument may be, it cannot be used to detect an anthro-149
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pogenic trend in the climate system with uncertainty less than that caused by natural (internal)150

variability (due to, e.g. El Niño or volcanic eruptions).151

δmp =
√

12∆t−3(snσvar)2κvar) (2)

In the current paper, we use σvar as the standard deviation of the variable’s global, annual152

mean time series. The presence of a trend in a time series used to estimate σvar can artifi-153

cially increase both natural variability parameters, which would lead to erroneously less strin-154

gent instrument accuracy requirements. For κvar, we use the Weatherhead et al. (1998) definition,155

κvar =
√
(1+ρ1)/(1−ρ1), where ρ1 is the lag-1 autocorrelation of the anomaly time series. De-156

tails of determining the natural variability (σvar and κvar) specific to the cloud properties examined157

in these studies are discussed in Section 3. Phojanamongkolkij et al. (2014) found only small dif-158

ferences in trend uncertainty estimation using the Weatherhead et al. (1998) versus (Leroy et al.159

2008) definition of autocorrelation time and in using monthly versus annual time series.160

Information in Eqns. 1 and 2 can be used to determine a calibration uncertainty requirement,161

depending on how close to perfect it is desired for an observing system to be capable of detecting162

a trend, a concept that can be quantified by taking the ratio between δm and δmp.163

Ua =
δm
δmp

=

√
1+

(snσV cal)2κcal

(snσvar)2κvar
(3)

In these studies, we assumed a standard satellite instrument lifetime of 5 years for the calibration164

autocorrelation time, κcal , and set a goal for the RS and IR CLARREO instruments to be 20% from165

perfect, making Ua = 1.2. This goal means that these instruments would be designed such that the166

geophysical trends would be no more than 20% more uncertain than those trends calculated using167

a perfect instrument.168
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Solving Eqn. 3 for σV cal , we obtain the required absolute calibration to satisfy the trend uncer-169

tainty goal, indicated by the value of Ua.170

snσV cal =

√
(U2

a −1)(snσvar)2κvar)

κcal
(4)

Note that σV cal is in the units of the cloud variable (or whichever geophysical variable is be-171

ing studied), not calibrated instrument units such as reflectance or brightness temperature. Also,172

because ultimately the calibration instrument accuracy will be reported for some signal-to-noise173

ratio or confidence level, we included sn on the left side of the equation as well. To determine174

σcal , the measurement uncertainty in calibrated instrument units, we need to characterize the re-175

lationship between each cloud property and reflectance or brightness temperature in the MODIS176

spectral bands used to retrieve those cloud properties, analysis for which we provide details in177

Section 3b. The examples for calibration requirements provided by W13 used temperature and178

shortwave cloud radiative forcing (effect) as the geophysical climate variables. In those cases,179

there is a simple direct relationship between instrument calibration and each geophysical variable.180

For cloud properties, the relationship is less direct and requires the additional analysis shown in181

Sections 3 and 4.182

3. Determining Requirements from Accuracy Framework183

a. Natural Variability of CERES/MODIS Cloud Properties184

We examine several cloud properties retrieved by the CERES (Wielicki et al. 1996) Cloud Prop-185

erty Retrieval System (CPRS) (Minnis et al. 2011): cloud fraction, cloud optical thickness (log10),186

liquid water cloud effective radius, and cloud effective temperature. The logarithm of optical187
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thickness was evaluated because it is approximately linearly proportional to the cloud radiative188

effect.189

To estimate the natural variability parameters, σvar and κvar, globally and annually averaged190

cloud property anomaly time series were constructed from the CERES/MODIS SSF1deg Edition191

4A Cloud Products (Wielicki et al. 1996; Minnis et al. 2011) using 11 years of data between July192

2002 and June 2013. These averages excluded regions poleward of 60◦ N and S and any 1◦ grid193

boxes containing snow or ice identified using the 1◦ CERES monthly compilation of snow and194

ice percent coverage of the National Snow and Ice Data Center’s 25 km daily coverage (Nolin195

et al. 1998) and the permanent snow map from the U.S. Geological Survey’s International Geo-196

sphere/Biosphere Programme (IGBP) (Loveland et al. 2000). The cloud mask algorithm operates197

differently when discriminating clouds from snow or ice-covered surfaces (Trepte et al. 2003;198

Minnis et al. 2008), so these regions were eliminated to focus the scope of these studies.199

Because MODIS Terra sensor degradation has contributed to calibration-based trend artifacts in200

geophysical properties retrieved from the MODIS TERRA L1B data (Lyapustin et al. 2014) we201

used the CERES/MODIS Aqua cloud properties to compute σvar and κvar. This study was con-202

ducted on global and annual scales to provide the most stringent spatial and temporal constraint203

on accuracy requirements. Natural variability increases at smaller zonal and regional scales com-204

pared to global and annual scales, resulting in less stringent requirements (Wielicki et al. 2013).205

A second reason to use global means is that cloud feedback is most closely related to global mean206

changes in cloud properties (Zelinka et al. 2012, 2013).207

Using linear regression, we de-trended the time series prior to calculating σvar and κvar to remove208

any significant linear trends, which would artificially inflate both terms. Lastly, using currently209

available observed time series of cloud properties to determine their natural variability results in210

short annual time series (11 years). The σvar of short times series tends to be underestimated.211
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To address this, we used the Student-t statistical distribution to scale the standard deviation using212

the degrees of freedom of our problem, rather than the Student-t value for an infinite number of213

samples. This has an impact on the snσvar and snσV cal products found in the equations above. For214

example, rather than calculate the 95% confidence calibration uncertainty by using sn = 2, we use215

the Student-t value for 10 degrees of freedom of sn = 2.228.216

The natural variability parameters of the cloud properties evaluated in this study are shown in217

Table 1. For calculating requirements in the reflected solar bands, σvar values were calculated218

relative to the 11-year cloud property averages, which are also shown in Table 1.219

b. Sensitivity of CPRS Cloud Properties to Instrument Changes220

Using Eqn. 4, σV cal (absolute and relative) was calculated for each cloud property, shown in the221

last two columns of Table 1. σcal , the absolute calibration requirement in calibrated measurement222

units (reflectance and brightness temperature) must ultimately be computed, however, using the223

following relationship:224

σV cal = σcal
∂C
∂ I

(5)

where C is the cloud property of interest (e.g. cloud fraction, optical thickness), and I is the225

measurement in calibrated instrument units (reflectance or brightness temperature). We used the226

offline CERES Cloud Property Retrieval System (CPRS) Edition 4 with the CERES clear-sky227

start-up maps to calculate the sensitivity of the cloud properties to small changes in reflectance228

and brightness temperature (BT) to the primary MODIS Aqua channels used in the daytime (SZA229

< 82◦), non-polar (60◦S to 60◦N) cloud retrievals: 0.65 µm, 3.79 µm, 11 µm, 12 µm.230

The reflectance in the 0.65 µm band was changed by ±0.3% and ±1%, and the BT in the 3.79231

µm, 11 µm, and 12 µm bands were each changed by ±0.3 K and ±1 K. Gain changes were232
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applied in the RS band and offset changes were applied in the IR bands to emulate the type of233

calibration drifts expected in comparable RS and IR instruments. We calculated the absolute and234

relative differences between each cloud property after each individual calibration change in each235

band and the values from the baseline run, wherein no calibration changes were imposed.236

As in the natural variability analysis, snow or ice-covered pixels in non-polar regions were ex-237

cluded from this sensitivity analysis. These sensitivity studies were conducted using the high-238

est resolution of MODIS data available at the NASA Langley Atmospheric Science Data Center239

(ASDC), which is subsampled to every other pixel and every other scan line from the 1km MODIS240

L1B data. This results in MODIS reflectance and BT at a 1 km resolution and 2 km spatial sam-241

pling. Additionally, since MODIS is a passive instrument, only clouds with an optical thickness242

of at least 0.3 were included in these studies.243

Tests were conducted to determine the number of samples sufficient for robust statistics of cloud244

property sensitivity to reflectance and BT. The files for each day contain on the order of 106 cloud245

pixels. Given the large number of CPRS runs needed, we determined an appropriate subset of days246

within a month (in our case, July 2003), such that the averaged change in each cloud property was247

representative of the average computed using a full month’s worth of data. We explored this using248

a subset of our planned CPRS sensitivity runs: the gain increases imposed upon the 0.65 µm band249

MODIS reflectance for the entire month of July 2003. We calculated the requirements for the 0.65250

µm channel for each cloud property using differenced averages that included an increased number251

of days throughout the month, starting with the first day of July 2003. The final calculation for the252

month were differenced averages computed using the cloud data for the entire month. We found253

that by the three-week mark (21 days), the requirements for each cloud property stabilized to a254

value that was typically 4% or less than the full month value. The only deviation we saw from this255
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difference was a 10% relative difference from the full month value for cloud fraction. We therefore256

decided to use 21-day averages for the remainder of our studies.257

In setting up such studies, one should also consider the other design aspects of the new instru-258

ment. For example, the CLARREO Reflected Solar spectrometer has been designed to match259

measurements with other sensors in space, time, and viewing angle (W13), meaning that the260

CLARREO Reflected Solar instrument design allows for inter-calibrating with a MODIS-like in-261

strument across its full swath. We therefore evaluated cloud properties retrieved across the MODIS262

full swath.263

Global, 21-day cloud property means were calculated using MODIS data from the first three264

weeks of July 2003. Linear regression was applied to determine the slope for each set of absolute265

and relative differenced averages. Because both positive and negative calibration changes were266

imposed, the linear parameters for both sets of changes were computed separately. This allowed267

examination of linearity for every band, imposed change, and cloud property across both the neg-268

ative and positive changes. The slopes determined from the linear regressions give the averaged269

sensitivity of each cloud property (C in Eqn. 5) to changes in MODIS reflectance or brightness270

temperature (I in Eqn. 5). The standard deviations of the daily, globally averaged differences271

were used to determine the uncertainties in the regression slopes, allowing for estimation of the272

uncertainty in the sensitivities, and, ultimately the determined requirements.273

Upon calculating the requirements for each cloud property and each band it was clear that certain274

cloud property-driven requirements served as limiting factors within each spectral band. Five of275

these sensitivities (slopes) are shown in Table 2 for the band(s) predominantly used to calculate276

each property: cloud optical thickness (0.65 µm), cloud fraction (11 and 12 µm), effective cloud277

temperature (11 µm), and water droplet effective radius (3.8 µm). The sensitivities shown in Table278

2 are the average sensitivities determined from the linear regressions discussed above. In these279
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cases discussed here, the relationships were linear across the increased and decreased changes, as280

shown in Figure 1 with two examples: cloud optical depth and effective temperature.281

The bands shown in Table 2 are not the only bands to which these four cloud properties were282

sensitive. For example, the CPRS cloud mask is determined prior to calculating cloud optical depth283

using the 0.65µm reflectance (R0.65µm), so although the optical depth is predominantly sensitive to284

changes in the R0.65µm, it is also sensitive to changes in the 11 and 12 µm brightness temperatures285

(BT11µm and BT12µm). Information in both of those bands is used in the cloud mask, changes in286

which will, to some degree, impact the average magnitude of the cloud optical depth and other287

subsequently retrieved cloud properties.288

For simplicity and to clearly demonstrate a proof of concept for applying the climate accuracy289

framework to cloud properties retrieved from cloud imagers, we have conducted these studies by290

considering changes in each band individually. Evaluating changes in multiple bands simulta-291

neously remains for future study and would more realistically simulate potential changes in an292

operational satellite instrument.293

The results from these studies are dependent on the algorithm used. Alternate results can be294

expected if a different algorithm (MODIS-ST cloud algorithms) or cloud imager and its corre-295

sponding algorithms (e.g. VIIRS) were used to determine these sensitivities.296

4. Implications for Instrument Requirements297

a. Optical Thickness, Effective Temperature, and Cloud Fraction298

Combining the natural variability and sensitivity results allows for calculation of instrument299

requirements (Eqns. 4 and 5). Using the initial CLARREO goal to design an instrument capable of300

detecting trends with uncertainties no more than 20% (Ua = 1.2) from that of a perfect instrument301
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(W13) as an example and starting point, we determined a relative σvar for the log10 cloud optical302

thickness (log10τc) of 0.621% and a κvar of 0.85 years (Table 1). We then use Eqn. 4 to find snσV cal303

for Ua = 1.2. In this paper we discuss all requirements at 95% confidence (2σ ); however, recall304

from Section 3a that we use sn = 2.228 for a signal-to-noise ratio of 2 because of the tendency305

of shorter time series to underestimate variability. This resulted in a relative σV cal of 0.170% (far306

right column of Table 1), and a 2σV cal of 0.379% (i.e. at 95% confidence).307

To compute the 2σcal value, we used Eqn. 5 and the relative sensitivity of the CERES/MODIS308

log10τc to R0.65µm gain changes, which we found to be 1.38 %/% (Table 2) (that is, percent relative309

log10τc to R0.65 µm). This gives an absolute calibration requirement for the 0.65µm band of 0.27%,310

nearly equivalent to the current CLARREO RS requirement of 0.3% (2σ ) (W13). The 0.3%311

CLARREO RS broadband requirement was determined using the natural variability of the RS312

cloud radiative effect.313

The time to detect relative log10τc trends for conceptual instruments with different calibration314

uncertainties using Eqn. 1, including a perfect instrument with an instrument calibration uncer-315

tainty of 0% (Eqn. 2) are shown in Figure 2. Figure 2a shows the length of time required to detect316

optical thickness trends at different trend uncertainty levels (at 95% confidence) using conceptual317

instruments with different calibration uncertainties in the 0.65 µm band. Figure 2b shows how318

much longer it would take to detect a trend in cloud optical thickness with an imperfect instru-319

ment (i.e. one with some calibration uncertainty) than it would with a perfect instrument (i.e. one320

limited only by natural variability).321

Generally the detection times among different instruments span a larger range as the required322

trend uncertainty approaches 0 %/decade. For example, for an optical thickness trend of 10323

%/decade the difference in detection time between a perfect observing system and one with a324

3.6% (2σ ) uncertainty spans about a decade, and a perfect observing system can observe such a325

15



trend in less than 5 years. However, detection of a much smaller trend of 2 %/decade becomes326

more difficult, with detection time differences spanning about 25 years between a perfect observ-327

ing system and one with 3.6% calibration uncertainty.328

Without further information, however, the range of optical depth trend uncertainty shown in329

Figure 2 is arbitrary. The question that remains is over what range of trends our analysis should330

be focused. This can be determined by estimating the expected range of optical thickness trends331

that correspond to current climate model projections. Estimating this range would help to better332

constrain instrument accuracy requirements for detecting trends in optical thickness. To place333

these results into a climate change-relevant context, we related the cloud optical thickness trend to334

equilibrium climate sensitivity (ECS) and SW Cloud Feedback. Relating cloud feedback and ECS335

allows a focus on cloud optical thickness trends and cloud feedback magnitudes approximately336

corresponding to the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report337

(AR5) ECS intermodel range of 2.1 K to 4.7 K (Stocker et al. 2013).338

We applied the forcing-feedback framework ∆RF = ∆ECS∑ λ̄i, using the IPCC AR5 Effec-339

tive Radiative Forcing (RF) Fixed Sea Surface Temperature multi-model mean for doubled CO2,340

∆RF = 3.7Wm−2. The non-cloud feedbacks were used from IPCC AR5 globally averaged model341

means of the Planck, water vapor, lapse rate, and surface albedo feedbacks (Flato et al. 2013),342

shown in Table 3.343

The SW and LW cloud feedbacks used were the ensemble averages, neglecting rapid adjust-344

ments, calculated by Zelinka et al. (2013) from abrupt quadrupled CO2 simulations, in which345

the cloud fraction, optical thickness, and altitude contributions to the SW and LW cloud feed-346

backs were partitioned by isolating contributions due to changes in cloud amount, cloud optical347

thickness, and cloud height using output from CFMIP2/CMIP5 model simulations and CTP-τ his-348
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tograms (Table 3). Using the ∆RF and feedback values detailed above, we calculated an ECS of349

2.53 K, which is within the AR5 intermodel range of 2.1 to 4.7 K (Stocker et al. 2013).350

We used the forcing-feedback framework to calculate LW and SW cloud feedbacks solely due to351

changes in cloud amount, altitude, or optical depth for a range of equilibrium climate sensitivities.352

We describe our methodology of this process in detail using cloud optical thickness as an example.353

Using the AR5 ∆RF for doubled CO2, feedbacks listed in Table 3, and the range of ECS considered354

in this analysis, (∆ECS) j = 1−9 K, ∆ ECS = 1 K, we computed nine corresponding values of the355

SW cloud feedback due to changes in cloud optical thickness, λ c,sw,τc with the following equation:356

(λ c,sw,τc) j =
∆RF
(∆T s) j

−
{

∑ λ̄i − (λ c,sw,τc)
}
. (6)

In Eqn. 6, j indexes the number of ECS values for which we calculated λ c,sw,τc , and the summa-357

tion term on the right is the sum of the climate feedbacks from which the nominal λ c,sw,τc shown358

in Table 2 is subtracted. The difference between the summation term and the nominal λ c,sw,τc is359

equivalent to 1.36Wm−2K−1. Each computed value of (λ c,sw,τc) j was added to the nominal con-360

tributions to SW cloud feedback due to changes in cloud amount and altitude (Table 3) to compute361

nine (λ c,sw) j values – one for each ECS evaluated. This process was repeated for each partitioned362

SW and LW cloud feedback.363

Finally, we estimated the relationship between each partitioned SW and LW Cloud Feedback364

and their corresponding cloud property trends. We used the monthly averaged 1◦ gridded CERES365

Edition 4 data products to estimate cloud radiative kernels by calculating the differences between366

select geophysical variables from July 2006 and July 2004 and using multiple linear regression367

to regress LW irradiance, SW irradiance over land, and SW irradiance over ocean on those vari-368

ables. The data products acquired were the SW and LW TOA irradiance (flux), cloud fraction,369

cloud optical depth, cloud effective temperature, surface skin temperature, column-integrated wa-370
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ter vapor, and cloud emissivity. For consistency, we excluded regions poleward of 60◦ and snow371

or ice-covered non-polar regions in computing the July 2006 - July 2004 differences. The ocean372

and land SW irradiance was regressed onto cloud fraction and the relative log10τc (separated by373

land and ocean surface types with the USGS IGBP map). The LW irradiance was regressed onto374

cloud fraction, effective cloud top temperature, cloud emissivity, total column precipitable water,375

and surface skin temperature. The SW land and LW TOA irradiance anomalies computed with the376

multivariate linear regression results are each compared to their corresponding CERES-observed377

anomalies in Figure 3. The regression coefficients from multivariate linear regressions were used378

as the estimated radiative kernels (e.g. δ%log10(τ)
δFSW,ocean

) in these studies and are shown in Table 4.379

We multiplied the cloud property-partitioned SW and LW cloud feedbacks by a global mean380

surface temperature trend of 0.25 K per decade to calculate TOA SW and LW irradiance trends (in381

Wm−2/decade). Then, multiplying the radiative kernels and the SW and LW irradiance trends, we382

computed corresponding cloud property decadal trends. These analyses resulted in relationships383

among equilibrium climate sensitivity, cloud property trends (for cloud fraction, cloud effective384

temperature, and cloud optical thickness), and the SW and LW cloud feedback.385

Similarly to Figure 2, Figure 4 shows the time to detect trends (Fig. 4a) and the delay compared386

to a perfect observing system in the time to detect trends (Fig. 4b) for reflected solar instru-387

ments with various calibration uncertainties in the 0.65 µm band. However, the Figure 4 optical388

thickness trend uncertainty range (left y-axis) has been adjusted using the additional information389

relating ECS and SW cloud feedback to optical thickness decadal trends and includes the AR5390

ECS intermodel range shaded in gray. The farthest right y-axis shows the equivalent cloud optical391

thickness trend. The only difference between the left and farthest right y-axes is that the optical392

thickness trend has negative values, whereas trend uncertainty cannot be negative.393
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The resulting estimation of the relationship among ECS, SW cloud feedback, and cloud optical394

thickness trend uncertainty shows that the globally averaged optical thickness trend range falls395

between -0.56 %/decade (for 4.7 K ECS) and 0.39 %/decade (for 2.1 K ECS) (Fig. 4, shaded).396

With an instrument with a 0.65 µm absolute calibration accuracy of 0.3% (2σ ) it would take397

21–27 years to begin distinguishing trends from natural variability, depending on the magnitude398

of the trend, equivalent to a 2–4 year delay compared to a perfect instrument (i.e. one limited399

solely by natural variability). However, continuing with cloud imager absolute calibration levels400

comparable to those currently operational (e.g. 3.6%, 2σ ), the trend detection delay compared to401

a perfect instrument is longer, between 60 and 76 years, depending upon the trend magnitude.402

To evaluate the challenge of detecting a trend of smaller absolute magnitude in cloud optical403

thickness, which is possible, given the likely range of τc trends within the AR5 intermodel range,404

we turn to the nominal ECS that we calculated from our forcing-feedback calculation of 2.53 K.405

The corresponding estimated optical thickness trend is 0.1 %/decade, a trend closer to zero than406

those corresponding to a 2.1 K or 4.7 K ECS. It would take a perfect instrument 60 years to begin407

distinguishing this trend from natural variability, a feat that would take a CLARREO-like inter-408

calibration standard 66.7 years. With today’s instrument accuracy requirements, we would wait409

over a century longer (187 years) before detecting this smaller trend. Figure 4 demonstrates that410

observations can most quickly eliminate large absolute trends in cloud optical depth, or equiva-411

lently, extreme values of climate sensitivity. The longer and more accurate the climate record, the412

tighter the constraint on ECS uncertainty.413

The results related to the effective cloud temperature (Te) trend, LW cloud feedback, and ECS414

are shown in Figure 5. We found a σvar of 0.147 K and a κvar of 0.679 years. Using the climate ac-415

curacy framework (Eqns. 4 and 5) with a sensitivity of cloud effective temperature to BT changes416

in the 11 µm band of 1.34 K/K, we determined that for a goal of 20% trend accuracy departure417
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from perfect, the 11 µm band requirement is 0.06 K (2σ ), which is also the current CLARREO IR418

accuracy goal (W13). Applying our analysis to link the Te trend, LW cloud feedback (upon which419

cloud temperature, and therefore altitude, has a greater impact than upon SW cloud feedback) and420

ECS, we estimate the range of Te trends to be -0.036 K/decade (ECS of 2.1 K) to -0.33 K/decade421

(ECS of 4.7 K). This Te trend range, illustrated in Fig. 6 by the shaded region, is predominantly422

negative, indicating rising cloud heights. This estimation is consistent with GCM simulations of423

cloud changes, their projections of a rising tropopause level, and their resulting calculations of424

positive LW cloud feedback due to rising cloud heights (Zelinka et al. 2012; Collins et al. 2013).425

For the likely range of cloud effective temperature, the trend detection delay compared to a426

perfect instrument for a cloud imager inter-calibrated with a CLARREO-like spectrometer is 1 –427

5 years. For today’s instruments the delay would be longer, ranging between 21 – 95 years for a428

VIIRS-like calibration uncertainty of 0.54 K (2σ ) and 26–117 years for a MODIS-like calibration429

uncertainty of 0.68 K (2σ ).430

For global cloud fraction, we found the σvar to be 0.171 %, and the κvar to be 1.35 years. For431

all instances of cloud fraction-related values, except in Table 1 where the relative σvar and σV cal432

are stated, cloud fraction is stated in percent cloud fraction ranging from 0% (clear)–100% (com-433

pletely overcast). The CPRS cloud mask involves several MODIS bands, depending upon the434

scene. Among the four primary bands investigated in this study, the globally averaged cloud frac-435

tion exhibits the most sensitivity to the 11 and 12 µm bands. We determined globally averaged436

sensitivities of cloud fraction to BR changes in the 11 and 12 µm bands to be -0.28 and -0.35437

%/K in the 11 and 12 µm bands, respectively. For these bands the 20%-from-perfect absolute438

calibration accuracy requirements are more more lenient than the 0.06 K CLARREO IR require-439

ment at 0.47 K for the 11 µm band and 0.39 K for the 12 µm band. The impact of instrument440

calibration on the time to detect trends and the delay in detection time compared to a perfect in-441
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strument for both IR bands is shown in Figure 6. Note that the current VIIRS and MODIS absolute442

calibration uncertainties are less lenient than both 20%-from-perfect absolute calibration accuracy443

requirements.444

These results for cloud fraction need to be considered with some caution, however. Recall that445

within these studies, we have thus far evaluated the sensitivity of cloud properties to changes in446

four MODIS bands independently, and we have determined the impact on time to detect trends447

in those cloud properties based on calibration requirements in each of those bands. This should448

not be the only way these requirements are evaluated, however, since within the CERES/MODIS449

cloud mask retrieval algorithm, bands may be used individually, such as the 11 µm band which450

is used to determine if the pixel is too cold to be cloud-free, or the combination of information451

between two bands may be used together, such as the difference between the BT in the 11 and452

12 µm bands. Additionally several other cloud mask tests are often applied using reflectance and453

brightness temperature in different wavelengths depending on the cloud type encountered. For454

example, there are differences in determining thin high clouds versus low thick clouds.455

We have conducted preliminary investigations that have demonstrated the impact of these cloud456

types differences on the sensitivity of cloud properties to changes in the four bands considered457

here. In these preliminary results, we have found that for different cloud types, the sensitivity of458

cloud fraction varies not only by magnitude but also by sign for the 11 µm band. Taking the 21-459

day cloud fraction-weighted average of these sensitivities gives the total cloud sensitivities used460

in the current study. The total cloud sensitivities used in this study, however, do not necessarily461

sufficiently represent the variability in the sensitivity among different cloud types. Further in-462

vestigation, therefore, is required that also carefully examines the natural variability of the cloud463

properties of different cloud types, in addition to their RS and IR instrument calibration sensitivi-464
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ties, the combination of which would allow for determination of calibration requirements by cloud465

type.466

b. Water Cloud Effective Radius467

We also determined accuracy requirements for detecting trends in effective particle size of water468

clouds. In the CPRS, the effective particle radius, re, is retrieved primarily using the information469

about particle size in the 3.8 µm band. Using the method described above we determined the accu-470

racy requirement for an instrument to provide sufficiently accurate data that would allow for trend471

detection within 20% from that of a perfect instrument, which we found to be 0.01 K. Although the472

current CLARREO design does not include the 3.8 µm band, this requirement is more stringent473

than the accuracy requirement for the CLARREO IR instrument (designed to span 5–50 µm). As474

in our previous analysis which quantified the relative trends in cloud properties in the context of475

the AR5 equilibrium climate sensitivity intermodel range, the 3.8 µm band requirements relative476

to water cloud effective radius must also be placed into a relevant context.477

This climate change accuracy analysis for effective radius can be placed into a climate change-478

relevant context using the relationship between re and the aerosol indirect effect (Twomey 1977),479

or as it has more recently been named, the Effective Radiative Forcing due to aerosol-cloud inter-480

actions (ERFaci) (Stocker et al. 2013). Trends in the ERFaci can be linked to cloud changes in481

both cloud amount and optical depth (and, therefore, effective radius); however, in the following482

analysis, we focused solely on the connection between the ERFaci and optical depth. A decrease in483

water particle size, in a cloud with constant liquid water content, increases the total water droplet484

cross-sectional surface area, thus increasing the cloud optical depth. A decrease in water cloud485

effective particle size may indicate an increase in cloud condensation nuclei, which are typically486
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dominated by aerosol particles. We therefore evaluated the level of instrument accuracy required487

to detect trends in re to better constrain estimates of ERFaci.488

Ultimately, we needed to estimate a relationship between aerosol forcing trends and effective489

radius trends. To quantify this relationship we used the 30 year forcing projections from the AR5490

Representative Concentration Pathway 4.5 Wm−2 (RCP4.5) scenario (Collins et al. 2013). Be-491

tween 2000 and 2030, the RCP4.5 total anthropogenic and natural Effective Radiative Forcing492

projected change is 1.31 Wm−2. The total aerosol ERF (ERFari+aci) (Stocker et al. 2013), which493

includes aerosol cloud interactions (aci) and aerosol radiation interactions (ari) are nearly indistin-494

guishable among the four RCPs, with the ERFari+aci becoming less negative by about 1 Wm−2
495

during the 21st century. Between 2000 (-1.17 Wm−2) and 2030 (-0.91 Wm−2) the ERFari+aci496

was projected to increase by 0.26 Wm−2. However, to connect the aerosol ERF to the effective497

radius trend, we needed to isolate the ERFaci. AR5 radiative forcing estimates for 2011 relative to498

1750 show that the ERFaci and ERFari contribute 50% each to the ERFaci+ari, each being about499

-0.45 Wm−2 (Myhre et al. 2013). Assuming this ratio remains approximately constant throughout500

the 21st century, we estimate an ERFaci change between 2000 and 2030 of 0.13 Wm−2 (0.043501

Wm−2/decade).502

The ERFaci trend presented above (∆ERFaci) can be represented as503

∆ERFaci = ∆log10(τc)w
∂CRESW,w

∂ log10(τc)w
(7)

where the w subscript indicates water cloud, and CRESW,w is the SW cloud radiative effect for504

water cloud. The radiative kernel, ∂CRESW,w
∂ log10(τc)w

was computed in a manner similar to those described505

in the previous section and shown in Table 4, however, with minor differences. The previous ra-506

diative kernels were computed for the TOA SW and LW irradiance, whereas these were computed507

for the SW CRE. Additionally, because here the focus is on liquid water clouds, these kernels were508
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computed using one year of data to ensure a sufficient sample size. The resulting kernel value and509

its uncertainty is ∂CRESW,w
∂ log10(τc)w

=−0.728±0.15 %/Wm−2. From Equation 7, we solve for the optical510

thickness trend, ∆log10(τc)w, and the relationship between this trend and an effective radius trend511

can be shown to be512

∆log10(τc) = ∆log10

{
C

LWP
re

}
= ∆log10(C)+∆log10(LWP)−∆log10(re) (8)

513

∆log10(τc) =−∆log10(re) (9)

From Slingo (1989), we use the parameterization that approximates the relationship between514

water cloud τc and re, where C is a constant approximated by h ∗ 3/2, with h being the geomet-515

ric cloud height, and LWP is the globally averaged liquid water path. Equation 8 simplifies to516

Equation 9, considering logarithm rules and that both C and LWP are constants, so the trends of517

their logarithms are zero. Combining Equations 9 and 7 provides a relationship between the ER-518

Faci and the (log10) water cloud effective radius. In addition to the AR5 projected change of the519

total ERF, we modified the ERFaci to cover a range of values and computed the corresponding520

water cloud effective radius trend (relative trend of the base-10 logarithm of the effective radius).521

This relationship and the expanded analysis covering a range of potential ERFaci trends linked to522

corresponding re trends is shown in Figure 7.523

For the specific AR5 projection discussed above for which the ERFaci trend was 0.043524

Wm−2/decade, the corresponding relative log10re trend is 0.06 %/decade. It would take a per-525

fect instrument 19 years to detect this trend. For an instrument capable of detecting trends within526

an uncertainty of 20% from perfect (0.01 K, 2σ ) the delay beyond a perfect instrument would527

be 1.5 years. With a CLARREO-like instrument, the delay would be 22 years. For instruments528

24



comparable to today’s operational IR cloud imagers, the delay in trend detection time would be529

over a century.530

These results need to be considered with care, as we have made several assumptions within this531

analysis, which we have included in our description above; however, despite the idealized context532

within which we obtained these results, our analysis provides important information regarding533

the impact of calibration requirements on quantifying the aerosol indirect effect, which is among534

the greatest uncertainties in radiative forcing. We have shown that with an instrument with a535

comparable absolute calibration requirement to the CLARREO IR spectrometer, trends in effective536

radius, and therefore ERFaci could be detected at about eight or nine decades sooner than with537

existing instruments. These results illustrate, similarly to the results from W13, the importance538

of stringent accuracy requirements for climate change trend detection. This study was conducted539

solely using the effective radius retrieved using the 3.8 µm band; however, it would also be relevant540

to extend this study to investigate the impact of absolute calibration accuracy on the time to detect541

trends in water cloud effective radius retrieved using reflectance in the 1.6 µm and 2.1 µm bands.542

5. Summary, Discussion, and Conclusions543

Reducing cloud property trend detection times and trend uncertainties using measurements from544

instruments with sufficiently high accuracies for climate change detection and attribution would545

contribute significantly to improved understanding of climate processes. In these studies we ap-546

plied a climate accuracy framework (Wielicki et al. 2013) (W13) to enable quantitatively-based547

justification for determining what constitutes sufficient accuracy requirements for timely cloud548

property trend detection. We applied this climate accuracy framework to quantify the impact of549

absolute calibration accuracy of reflected solar and infrared instruments on the trend detection time550

of cloud properties retrieved by the CERES/MODIS Cloud Property Retrieval System (Wielicki551
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et al. 1996; Minnis et al. 2011). Our results demonstrate a quantitative basis upon which to de-552

termine climate accuracy requirements to detect changes in cloud properties and understand their553

relationships to changes in Earth’s climate system.554

In our studies, we followed the CLARREO goal for detection of climate variable trends at no555

more than 20% degradation relative to the accuracy of a perfect observing system. With these556

goals, the absolute calibration requirements determined using cloud radiative effect and global557

mean surface temperature were 0.3% for the reflected solar spectrometer and 0.06 K for the in-558

frared spectrometer, respectively (W13). However, until the current study no other similar goals559

had been formally evaluated for other essential climate variables, such as cloud properties. Here,560

we focused on four cloud properties: cloud fraction, cloud optical thickness, cloud effective tem-561

perature, and effective radius.562

To quantify the impact of different instrument absolute accuracy requirements for clarifying cli-563

mate change impacts and relationships, we also estimated relationships among trends in cloud564

properties (cloud fraction, optical thickness, and effective temperature), equilibrium climate sen-565

sitivity, and SW and LW cloud feedback. This analysis provides a quantitive context within which566

necessary and sufficient accuracy requirements can be defined for future climate change observ-567

ing instruments and to reduce uncertainty in ECS, which is dominated by uncertainty in cloud568

feedback. Linking these quantities provides an estimation of the potential cloud property trend569

magnitudes that could be expected for a range of climate sensitivities and SW and LW cloud feed-570

backs. Additionally, this analysis quantifies the differences in cloud property trend detection time571

considering RS and IR instruments with various absolute calibration uncertainties.572

The CLARREO RS requirement of 0.3% (2σ ) is nearly equivalent to the requirement for an573

instrument detecting cloud optical thickness trends with a 20% degradation relative to a perfect574

instrument in the 0.65 µm band, which we found to be 0.27%. In linking cloud optical thickness575
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trends to the SW cloud feedback and ECS, we found that relative log10τc trends are likely to fall576

between -0.56 %/decade and 0.39 %/decade for Equilibrium Climate Sensitivities of 4.7 K and 2.1577

K, respectively. For an ECS of 2.53 K (our nominal ECS determined from the forcing-feedback578

framework), we estimated a cloud optical thickness trend of 0.1 %/decade. The delay compared579

to a perfect observing system in detecting trends within the AR5 ECS intermodel range spanned580

about 2–7 years for a CLARREO-like instrument to several decades for instruments with accuracy581

requirements comparable to that of today’s instruments (60 years to more than a century).582

The climate accuracy framework applied to cloud effective temperature revealed a 0.06 K re-583

quirement for the 11 µm band for an instrument with a 20% degradation compared to a perfect584

instrument, which is equivalent to the current CLARREO IR requirement of 0.06 K (2σ ). Be-585

cause cloud altitude (for which cloud effective temperature is a proxy) has a stronger impact on586

LW than SW cloud feedback, we linked trends in cloud effective temperature, LW cloud feedback,587

and ECS. This revealed that for the AR5 ECS intermodel range, the effective temperature trend588

may fall between -0.036 K/decade and -0.33 K/decade for ECS values between 2.1 K and 4.7589

K, respectively. Detection times for instruments with calibration requirements similar to today’s590

instruments (0.54 K–0.68 K) spans 20 years to more than a century. For a CLARREO-like IR591

instrument, detection delays are shorter, between 1 and 5 years, illustrating the benefit of highly592

accurate climate sensors. The IR requirements that we determined for detecting trends in cloud ef-593

fective temperature at a 20% from perfect degradation (comparable to CLARREO) would provide594

a substantial improvement in detection time compared to continuing with the absolute calibration595

accuracy of currently operational IR sensors.596

To detect trends in cloud fraction using the goal of detecting trends with trend uncertainties597

that are 20% from those detected by a perfect instrument, the 11 and 12 µm band requirements598

are 0.47 K and 0.39 K (2σ ). These requirements are less stringent than the current CLARREO599
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design of 0.06 K (2σ ) but more stringent compared to today’s cloud imager absolute accuracies.600

A more rigorous analysis of cloud fraction by cloud type is required to determine cloud fraction-601

driven climate accuracy requirements, given the complex dependence of the CPRS cloud mask602

for different cloud types on multiple MODIS bands. Our analyses provide the first direct link603

between satellite instrument calibration requirements and their impact on constraints on ECS and604

the detection time of climate change-scale cloud property trends.605

For detecting trends in water cloud effective radius (re), we determined that a 20%-from-perfect606

requirement is much more stringent than the current CLARREO IR accuracy requirement and is607

close to perfect at 0.01 K (2σ ). To extend our analysis to climate process variables, we linked608

trends in re to Effective Radiative Forcing due to aerosol cloud interactions (ERFaci) using the609

aerosol indirect effect mechanism. We used information from AR5 projections to find that de-610

tection times of re could be reduced by about eight decades with a CLARREO-like instrument611

calibration requirement compared to today’s instruments.612

Further studies to evaluate other essential climate variables with quantitative frameworks such613

as that presented by W13 and demonstrated here will become increasingly important within the614

current US and global challenge to appropriate sufficient resources for climate change monitoring.615

With the challenge of limited Earth Science funding to develop high-accuracy instruments for cli-616

mate change detection and attribution, using quantitative studies such as these can provide more617

rigorous justification for the design of new climate change satellite, aircraft-based, surface, and618

in-situ sensors. A similar method for determining the required quality of climate change measure-619

ments has been demonstrated in the report on Continuity of NASA Earth Observations from Space620

(National Research Council 2015), illustrating the increasing importance of conducting such stud-621

ies on a more extensive range of essential climate variables to provide the climate community with622

a more quantitative understanding of climate change measurement requirements.623
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This study demonstrates the value of applying the climate accuracy framework and techniques624

for placing the results from that framework application into a climate change-relevant context.625

As these studies are continued, various implementation details can be revised to further refine the626

utility and meaning of these results. Although we focused on trends in individual cloud properties627

and connected the value of improving trend detection time to climate model projections, apply-628

ing cloud fingerprints may help to detect secular trends more rapidly (e.g. Marvel et al. (2015);629

Roberts et al. (2014); Jin and Sun (2016)). In this study, we limited our analysis to evaluating the630

impact of calibration requirements in individual bands on trend detection times; however, eval-631

uating cloud property trend detection impacts of calibration requirements in multiple instrument632

bands simultaneously would provide a more realistic analysis. Because the CERES CPRS was633

used to quantify the sensitivity of cloud properties to gain and offset changes in MODIS data,634

the results from our study are dependent upon the retrieval algorithm used; therefore, it would635

also be valuable to extend these studies to other cloud imagers (e.g. VIIRS) and algorithms (e.g.636

MODIS-ST).637

In these studies, we focused on global trends in cloud properties for total cloud, without regard638

for regional or individual cloud type contributions; however, climate projections have indicated639

that different cloud types on both a global and regional scale respond differently to and exert dif-640

ferent feedbacks upon Earth’s changing climate. For example, there is a need for better constraint641

of low cloud processes to reduce uncertainty of the low cloud SW feedback and, ultimately, equi-642

librium climate sensitivity. It would be valuable, therefore, to expand the results of these studies643

to two-dimensional cloud type histograms. These analyses could then be expanded to link instru-644

ment requirements and their impact on cloud trend detection to climate model projections for those645

different cloud types, which would help to provide more specific constraints regarding instrument646

requirements.647
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To estimate the natural variability of cloud properties here, we used data from operational satel-648

lites (CERES/MODIS cloud properties), combined with statistical adjustments to account for the649

short annual time series and any potential secular linear trends. This, of course, assumes that the650

anomalies in cloud properties measured from satellite adequately represent cloud property natural651

variability.652

Our ability to detect cloud property trends is limited by the natural variability and instrument653

accuracy, as we have investigated in these studies, but trend detection uncertainty is also depen-654

dent upon uncertainties in inferring cloud properties from satellite measurements. Large climate655

change scale uncertainties in retrieval algorithms could be erroneously identified as secular geo-656

physical changes in the climate system or could mask or distort the true physically-driven climate657

change trends occurring in the climate system. In addition to evaluating the impact of instrument658

uncertainty on trend detection, the impact of time-invariable biases and uncertainties in geophysi-659

cal retrieval algorithms on trend detection accuracy in cloud properties and other essential climate660

variables must also be quantified, and, if possible reduced.661
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TABLE 1. Natural variability parameters calculated for the following cloud properties: Cloud Fraction (0-

100%), log10 optical thickness (τc ), Effective Temperature (Tc), and Liquid Water Effective Radius (re). Relative

standard deviations were calculated relative to the 2002–2013 CERES/MODIS Aqua global mean and multiplied

by 100%.

794

795

796

797

Mean κvar[Years] σvar σvar (Rel.) σV cal σV cal (Rel.)

Cloud Fraction 66.3% 1.35 0.171% 0.258% 0.0591% 0.0889%

Log10(τc) 0.610 0.850 0.00379 0.621% 0.00104 0.170%

Te 262 K 0.679 0.147 K 0.0560% 0.0359 K 0.0137%

Log10(re) (Liquid) 1.15 µm 0.753 8.59 x 10−4 µm 0.0748% 2.21 x 10−4 0.0193%
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TABLE 2. Partial derivatives (sensitivities) are given that represent the absolute (relative) sensitivity of cloud

properties to offset (gain) changes in brightness temperature (reflectance). Sensitivity uncertainties were com-

puted using the standard deviations of the global daily averages.

798

799

800

∂ log10(τc)
∂R0.65µm

[%/%] ∂CF(%)
∂BT11µm

[%/K ] ∂CF(%)
∂BT12µm

[%/K ] ∂Te
∂BT11µm

[K/K ] ∂ log10(re)
∂BT3.8µm

[µm/K ]

Average Sensitivity 1.38 -0.28 -0.35 1.34 -0.0370

2σ Sensitivity Uncertainty ± 0.0282 ± 1.25 x 10−3 ± 1.19 x 10−3 ± 0.0620 ± 1.14 x 10−3
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TABLE 3. The non-cloud feedbacks used are the ensemble averages from the IPCC AR5 doubled CO2 model

runs. The SW and LW cloud property-partitioned cloud feedbacks are those calculated by Zelinka et al. (2013)

from abrupt quadrupled CO2 model runs, neglecting rapid adjustments, using CFMIP2/CMIP5 model output.

801

802

803

2 X CO2 Radiative Forcing (RF) 3.7Wm−2

Planck Feedback (λ 0) −3.2Wm−2K−1

Water Vapor Feedback (λ w) 1.6Wm−2K−1

Surface Albedo Feedback (λ a) 0.3Wm−2K−1

Lapse Rate Feedback (λ L) −0.6Wm−2K−1

SW Cloud Feedback (λ c,sw) 0.16Wm−2K−1 Partitioned SW CF Contributions

Cloud Fraction (λ c,sw, f rac) 0.33Wm−2K−1

Cloud Altitude (λ c,sw,h) −0.07Wm−2K−1

Cloud Optical Depth (λ c,sw,τ ) −0.10Wm−2K−1

LW Cloud Feedback (λ c,lw) 0.28Wm−2K−1 Partitioned LW CF Contributions

Cloud Fraction (λ c,lw, f rac) −0.17Wm−2K−1

Cloud Altitude (λ c,lw,h) 0.42Wm−2K−1

Cloud Optical Depth (λ c,lw,τ ) 0.03Wm−2K−1

39



TABLE 4. Multiple linear regression coefficients and their 1σ uncertainties. The coefficients are computed

from CERES observations and are used as radiative kernels.

804

805

Coefficient SW Land Regression SW Ocean Regression LW Regression

∂%log10τc
∂FSW

0.261 ± 2.90 x 10−3 0.256 ± 1.80 x 10−3

∂CF
∂FSWorLW

0.805 ± 7.78 x 10−3 0.757 ± 5.58 x 10−3 -0.325 ± 3.97 x 104−3

∂Tc
∂FLW

0.825 ± 4.96 x 10−3

∂ε

∂FLW
-41.7 ± 0.524

∂WV
∂FLW

-5.93 ± 0.106

∂Ts
∂FLW

-0.929 ± 3.16 x 10−2
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Cloud Feedback (Wm−2K−1) (right y-axes). The gray shaded region shows the AR5 inter-827

model ECS range (2.1 K – 4.7 K). CL+M/V denotes current CLARREO RS 2σ absolute828

calibration requirement. M/V denotes the approximate current MODIS/VIIRS absolute 2σ829
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Fig. 5. For a range of 11 µm absolute calibration uncertainties, the time to detect trends (a) and the831

delay in detecting trends in cloud effective temperature (K/decade) with a real instrument832

compared to a perfect instrument (b) are shown linked with the Equilibrium Climate Sensi-833

tivity (ECS) (K) and LW Cloud Feedback (Wm−2K−1). The gray shaded region shows the834
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time to detect trends (left) and delay in detecting trends in cloud fraction (%/decade) (right)840
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Climate Sensitivity (ECS) (K) and SW Cloud Feedback (Wm−2K−1). The gray shaded842
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Fig. 7. For a range of 3.8 µm 2σ absolute calibration uncertainties the time to detect trends (left)848
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The dashed line shows the requirement determined for an instrument capable of detecting852

trends within 20% trend uncertainty compared to a perfect observing system. V and M853

denote the absolute calibration accuracies in the 3.8 µm bands for VIIRS and MODIS,854

respectively. . . . . . . . . . . . . . . . . . . . . . . . 49855
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FIG. 1. The slope of the solid line shown in (a) provides the relative sensitivity of the log10 cloud optical

depth (log10τc) to gain calibration changes in the 0.65 µm MODIS reflectance. The slope of the solid line in

(b) provides the sensitivity of the cloud effective temperature to offset calibration changes in the 11 µm MODIS

brightness temperature. The uncertainty in sensitivity (uncertainty in slope) is shown by the two dashed lines

in each figure. The four data points (excluding the origin point) are the global, 21-day averages of the CPRS-

retrieved cloud property change due to a change in instrument calibration.
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FIG. 2. For a range of 0.65 µm band 2σ calibration uncertainties, the 2σ cloud optical thickness trend

uncertainty in relative log10τc (%) per decade is shown versus a) trend detection time and b) the delay in the

detection time compared to a perfect observing system. The dashed line shows the requirement determined for
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FIG. 3. The CERES TOA irradiance (flux) anomaly differences between July 2004 and July 2006 from the a)

LW and b) SW land multiple linear regressions are compared to the CERES TOA LW and SW land irradiance

anomaly differences in a) and b), respectively. The multivariate regression (RM) coefficients for each regression

are also shown. Although not shown, the SW Ocean comparison is similar to that of the land, as seen by the

similarity of regression coefficients in Table 4.
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FIG. 4. Same as Figure 2, except the optical thickness trend uncertainty (left y-axis) and trend (far right y-axis)

are shown linked with the Equilibrium Climate Sensitivity (ECS) (K) and SW Cloud Feedback (Wm−2K−1)

(right y-axes). The gray shaded region shows the AR5 intermodel ECS range (2.1 K – 4.7 K). CL+M/V

denotes current CLARREO RS 2σ absolute calibration requirement. M/V denotes the approximate current

MODIS/VIIRS absolute 2σ calibration uncertainty.
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in detecting trends in cloud effective temperature (K/decade) with a real instrument compared to a perfect in-

strument (b) are shown linked with the Equilibrium Climate Sensitivity (ECS) (K) and LW Cloud Feedback

(Wm−2K−1). The gray shaded region shows the AR5 intermodel ECS range (2.1 K – 4.7 K). The dashed line

shows the requirement determined for an instrument capable of detecting trends within 20% trend uncertainty

compared to a perfect observing system. V and M denote the absolute calibration accuracies in the 11 µm bands

for VIIRS and MODIS, respectively.
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FIG. 6. For a range of 11 µm (top) and 12 µm (bottom) 2σ absolute calibration uncertainties the time to detect

trends (left) and delay in detecting trends in cloud fraction (%/decade) (right) with a real instrument compared to

a perfect instrument are shown linked with Equilibrium Climate Sensitivity (ECS) (K) and SW Cloud Feedback

(Wm−2K−1). The gray shaded region on the figure shows the AR5 intermodel ECS range (2.1 K – 4.7 K). The

dashed line shows the requirement determined for an instrument capable of detecting trends within 20% trend

uncertainty compared to a perfect observing system. CL+M/V denotes current CLARREO RS 2σ absolute

calibration requirement. V and M denote the absolute calibration accuracies in the 11 µm and 12 µm bands for

VIIRS and MODIS, respectively.
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FIG. 7. For a range of 3.8 µm 2σ absolute calibration uncertainties the time to detect trends (left) and

delay in detecting trends in water cloud effective radius (%/decade) (right) with a real instrument compared to a

perfect instrument are shown, having been linked to an estimate of the Effective Radiative Forcing due to aerosol

cloud interactions (ERFaci) decadal trend. The dashed line shows the requirement determined for an instrument

capable of detecting trends within 20% trend uncertainty compared to a perfect observing system. V and M

denote the absolute calibration accuracies in the 3.8 µm bands for VIIRS and MODIS, respectively.
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